Math 20550 - Calculus III Exam 3 Review

New things to know:

15. Multiple Integrals

15.4. Double Integrals in Polar Coordinates.

- Know the equations for converting between polar: (r, θ) , and cartesian: (x, y), coordinates.
- Know how to write planar regions in polar coordinates.
- Know how to change a double integral from cartesian coordinates to polar coordinates.
 - Don't forget the r in $dA = r dr d\theta$!!

15.5. Applications of Double Integrals.

- Given the density function for a lamina, know how to find the:
 - mass of the lamina: m
 - moments of mass of the lamina about the x- and y-axes: M_x and M_y
 - the coordinates for the center of mass (\bar{x}, \bar{y}) for the lamina
- It is really valuable to be able to compute double (and triple integrals) using symmetries if you can.

15.7. Triple Integrals.

- Be able to set up the bounds on and compute triple integrals in any order.
- Be able to read the region of integration off of the bounds on a triple integral.
- Be able to switch the order of integration in triple integrals.
- Given the density function for a solid, know how to find the:
 - mass of the solid: m
 - moments of mass about the xy-, xz-, and yz- planes of the solid: M_{xy} , M_{xz} , and M_{yz}
 - the coordinates for the center of mass $(\bar{x}, \bar{y}, \bar{z})$ for the solid

15.8. Triple Integrals in Cylindrical Coordinates.

- Know the equations to converte between cylindrical coordinates: (r, θ, z) , and cartesian coordinates: (x, y, z).
- Know how to write down the equations of surfaces in cylindrical coordinates
- Know how to convert a triple integral from cartesian coordinates to one in cylindrical coordintes
 - Don't forget the r in $dV = r dr d\theta dz$!!

15.9. Triple Integrals in Spherical Coordinates.

- Know the equations to converte between spherical coordinates: (ρ, θ, φ) , and cartesian coordinates: (x, y, z).
- Know how to write down the equations of surfaces in spherical coordinates
- Know how to convert a triple integral from cartesian coordinates to one in spherical coordinates Don't forget the $\rho^2 \sin \varphi$ in $dV = \rho^2 \sin \varphi \, d\rho d\theta d\varphi$!!

15.10. Change of Variables in Multiple Integrals.

- Know how to find the Jacobian, $\frac{\partial(x,y)}{\partial(u,v)}$, of a change of coordinates x=x(u,v), y=y(u,v). Likewise, know how to find the Jacobian for three variables as well.
- Know how to use the change of variables forumla to compute a double integral.
- Know how to choose a change of coordinates to make a region easier to integrate over.
- Know how to choose a change of coordinates to make a function easier to integrate.

16. Vector Calculus

16.1. Vector Fields.

- Given a vector field **F**, know how to sketch a plot of the vector field.
- Know how to find the gradient vector field of a function.

16.2. Line Integrals.

- Know how to compute line integrals of a function f along a curve C with respect to:
 - arc length: $\int_C f \, ds$ (scalar line integral)
 - $-x: \int_C f dx$
 - -y: $\int_C^{\infty} f \, dy$
 - $-z: \int_C f dz$
- Given the linear density function for a thin wire bent in the shape of a curve C, know how to find the mass of the wire as well as the coordinates for its center of mass.
- Know how to compute line integrals along a curve C which are a combination of line integrals with respect to x, y, and/or z.
- Know how to compute the vector line integral: $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- Know that vetor line integrals give the work done by a force field \mathbf{F} in moving a particle from one end of the curve C to the other.
- Know how to determine whether a vector line integral, $\int_C \mathbf{F} \cdot d\mathbf{r}$ will be positive, negative, or zero given a plot of the vector field \mathbf{F} with the curve C drawn in, c.f., exercises 17 and 18 in section 16.2. (Hint: it helps to remember the definition of the vector line integral which utilizes the unit tangent vector \mathbf{T} of the curve.)
- Know what the orientation of a curve is, and how it affects line integrals (in particular, line integrals with respect to x, y, or z; or vector line integrals).

16.3. The Fundamental Theorem for Line Integrals (and a piece of section 16.5).

- Know the fundamental theorem for line integrals.
- Know what it means for a vector line integral to be independent of path.
- Know when a vector line integral is independent of path.
- Know what it means for a vector field to be conservative (2 and 3 variables).
- Know how to check whether a vector field is conservative (2 and 3 variables).
- Know how to find the potential function for a conservative vector field (2 and 3 variables).

16.4. Green's Theorem.

- Know the statement of Green's theorem.
- Be able to apply Green's theorem to compute integrals of the form $\oint_C P dx + Q dy$.